Information and Assessment Needs for Permitting and Management

Russell Levens
Hydrogeologist
DNRC Water Management Bureau

Outline

- I. Overview of Permitting
- II. Surface water depletion / augmentation
- III. Information and assessment needs for permitting
- IV. Information and assessment needs for management

Basin Closures

COMPACT CLOSURES

Chippewa Cree Tribe of the Rocky Boy's Reservation-Montana Compact Effective 12/9/1999 (932 sq.mi.) -Big Sandy Creek (Excluding Sage Creek and Lonesome Lake Coulse) and Beaver Creek (40H)

Crow Reservation-Montana Compact Effective 6/16/1999 (3,586 sq.ml) --Bighorn River(43P), Little Bighorn River(43O), Pryor Creek(43E), Rosebud Greek within the Reservation: Youngs Creek, Squtrel Creek, Tanner Creek, Dry Creek, Spring Creek(42B); Sarpy Creek(42R); Cottonwood Creek, Five Mile Creek, Bluevater Greek(43D); Sage Creek(43N); Ft Greek, Bluevater Greek(43D); Sage Creek(43N); Ft Greek, Blue Greek Dry Greek and Bitter Greek(43N); Ft Greek,

Fort Belknap Reservation-Montana Compact Effective 4/9/2001 (15,071 sq. m.). Western Crossing and below the Eastern Crossing of boundary between U.S. and Canada (40GF, 40G, 40H, 40I, 40J, 40K, 40L, 40M, 40N, and 40O). Supercedes pre-existing closures.

National Park Service-Montana Compact Effective 1/3/1/1994 -Big Hole Battlefield / 12, 40T, 41L & 41M), (1,580 sq.m.l.) - 4 student N.P. (7, 45B, 41F & 41H), (1,580 sq.m.l.) - 4 student N.P. (7, 45B, 41F & 41H), (1,580 sq.m.l.) - 4 student N.P. (7, 45B, 41F & 41H), (1,580 sq.m.l.) - 4 student N.P. (1,580 sq.m.l.) - 4 student N.P. (1,580 sq.m.l.) - 4 student N.P. (1,580 sq.m.l.)

Northern Cheyenne-Montana Compact Effective 5/17/1991 (1,307 sq.mi.) -Rosebud Creek Basin Moratorium (42A)

United States Fish and Wildlife Service-Montana Compact Effective 5/77/151 q.m.i.) and Black Coulee (136 sq.m.i.) National Wildlife Refuges (410) Effective 4/19/1999 (239 sq.ml.) -Red Rock Lakes National Wildlife Refuge (41A)

CONTROLLED GROUNDWATER AREAS

Bozeman Solvent Site (41H) Effective 7/20/98 (approx. 5.5 sq.ml.)

Hayes Creek (76HB)
Permanent Closure 5/25/95 (0.08 sq.mi.)
Permanent Closure 12/1/98 (3.9 sq.mi.)

Idaho Pole Site (41H) Effective 12/30/01 (0.1 sq.mi.)

Larson Creek (76HF) Effective 11/14/88 (6 sq.mi

Old Butte Landfill/Clark Tailings Site (76G) Effective 12/17/99 (1.2 sq.ml.)

Paradise Railyard (76N) Effective 08/19/02 (0.5 sq.ml.)

Powder River Basin (42A, 42B, 42C, 42I, 42J, 42KJ, 43O, 43P) Effective 12/15/99 (7,105 sq.ml.)

Rocker (76G) Effective 5/30/97 (.25 sq.ml.)

South Pine (42L & 42M) Effective 11/1/67 (178 sq.mi.)

Sypes Canyon (41H) Effective 04/26/2002 (4.75 sq.mi.)

Warm Springs Ponds (76G)

Yellowstone Controlled Groundwater Area U.S.N.P.S.-Montana Compact (41F, 41H, 43B) Effective 1/31/94 (1,334 sq.ml.)

LEGISLATIVE CLOSURES

Bitterroot Basin Temporary Closure (76H) Effective 3/29/99 (2,862 sq.ml.)

Uefferson and Madison Basins (41A, 41B, 41C, 41D, 41E, 41F, & 41G) Effective 4/1/93 (11,660 sq.ml.)

Teton Basin (410) Effective 4/21/93 (1,917 sq.ml.)

Upper Clark Fork Basin (76E, 76F, 76G, 76GJ) Effective 4/14/95 (6,017 sq.ml.)

Upper Missouri Basin (41H, 41I, 41J, 41K, 41QJ, 41U)

MONTANA SURFACE WATER CLOSURE CONTROLLED GROUNDWATER AREAS

I. Permitting

- Physical water availability at the point of diversion
- Legal water availability within the area of potential impact
- Potential for adverse effects to wells and surface waters considering an applicant's plan to control their usage

II. Surface Water Depletion / Augmentation

- Hydraulic connection
 - saturation
 - continuity and properties of "confining layers"
 - matter of degree
- Modeling depletion or augmentation
 - rate and timing
 - location

Hydraulic Connection -Perched Stream

Hydraulic Connection – Discontinuous Strata

Rate and Timing of the Effects of Stream Depletion

Depends on: pumping rate, return flows, distance, aquifer and streambed properties, and aquifer boundaries

Location of the Effects of Depletion or Augmentation

Challenges for Augmentation

- retiring a seasonal water right to mitigate year-round use
- mitigating residual depletion
- mitigating depletion of multiple sources
- monitoring effectiveness

III. Information and Assessment Needs for Permitting

Stream Depletion / Augmentation Modeling

- Simple analytical models
- Uncalibrated numerical models
- Calibrated numerical models

Jenkins Method

Need: T, S_v , distance to stream

Partially Penetrating Stream with Parallel No-Flow Boundaries

Need: T, S_v, k', b', distance to stream, distances to boundaries

Numerical Models

Stream Depletion / Augmentation Modeling

- Analytical models
 - simple and consistent
 - input data are readily obtainable
 - do not represent complex conditions
- Numerical models
 - detailed
 - can be used to represent complex conditions
 - require extensive supporting data
 - subjective

Information for Permitting

- Hydraulic connection
 - geology
 - ground-water levels
 - stream flows
- Rate, timing, and location of depletion
 - aquifer and streambed properties
 - consumptive use
- Prior appropriators
 - locations
 - requirements
- Augmentation verification
 - ground-water levels
 - stream flows

IV. Information and Assessment Basin-wide Management

All of the above +

- Dynamic water budget
- Numerical modeling to assess basin-wide effects of withdrawals and augmentation
- Monitoring to assess the effectiveness of augmentation

Items for Discussion

- How should hydraulic connection be evaluated for permitting?
- What tools should be used to assess stream depletion and design augmentation plans for permitting?
- Can augmentation plans be monitored or otherwise verified?
- Should basin-wide numerical models be used for making ground-water management decisions?
- Novel augmentation approaches?